商业银行传统的信用风险度量方法有信贷决策的“6C”法和信用评分方法等。 “6C”法是指由有关专家根据借款人的品德(character)(借款人的作风、观念以及责任心等,借款人过去的还款记
商业银行传统的信用风险度量方法有信贷决策的“6C”法和信用评分方法等。
“6C”法是指由有关专家根据借款人的品德(character)(借款人的作风、观念以及责任心等,借款人过去的还款记录是银行判断借款人品德的主要依据);能力(capacity)(指借款者归还贷款的能力,包括借款企业的经营状况、投资项目的前景)、资本(capital)、抵押品(collateral)(提供一定的、合适的抵押品)、经营环境(condition)(所在行业在整个经济中的经营环境及趋势)、事业的连续性(continuity)(借款企业持续经营前景)等六个因素评定其信用程度和综合还款能力,决定是否最终发放贷款。
信用评分方法主要有Z值模型等。Z值模型由Altman于1968年提出,采用五个财务指标进行加权计算,对借款企业实施信用评分,并将总分与临界值(最初设定为1.81)比较,低于该值的企业被归入不发放贷款的企业行列。
近二十年来,由于商业银行贷款利润持续下降和表外业务风险不断加大,促使银行采用更经济的方法度量和控制信用风险,而现代金融理论的发展和新的信用工具的创新,给开发新的信用风险计量模型提供了可能。与过去的信用管理相对滞后和难以适应市场变化的特点相比,新一代金融工程专家将建模技术和分析方法应用到这一领域,在传统信用评级的基础上提出了一批信用风险模型。现代信用风险度量模型主要有KMV模型、CreditMetrics、麦肯锡模型和CSFP信用风险附加计量模型等四类。
CreditMetrics是由J.P.摩根公司等1997年开发出的模型,运用VAR框架,对贷款和非交易资产进行估价和风险计算。该方法是基于借款人的信用评级、次年评级发生变化的概率(评级转移矩阵)、违约贷款的回收率、债券市场上的信用风险价差计算出贷款的市场价值及其波动性,进而得出个别贷款和贷款组合的VAR值。
麦肯锡模型则在CreditMetrics的基础上,对周期性因素进行了处理,将评级转移矩阵与经济增长率、失业率、利率、汇率、政府支出等宏观经济变量之间的关系模型化,并通过蒙地卡罗模拟技术(a structured Monte Carlo simulation approach)模拟周期性因素的“冲击”来测定评级转移概率的变化。麦肯锡模型可以看成是对CreditMetrics的补充,它克服了CreditMetrics中不同时期的评级转移矩阵固定不变的缺点。
CSFP信用风险附加计量模型与作为盯市模型(MTM)的CreditMetrics不同,它是一个违约模型(DM),它不把信用评级的升降和与此相关的信用价差变化视为一笔贷款的VAR(信用风险)的一部分,而只看作是市场风险,它在任何时期只考虑违约和不违约这两种事件状态,计量预期到和未预期到的损失,而不象在CreditMetrics中度量预期到的价值和未预期到的价值变化。在CSFP信用风险附加计量模型中,违约概率不再是离散的,而被模型化为具有一定概率分布的连续变量。每一笔贷款被视作小概率违约事件,并且每笔贷款的违约概率都独立于其它贷款,这样,贷款组合违约概率的分布接近泊松分布。CSFP信用风险附加计量模型考虑违约概率的不确定性和损失大小的不确定性,并将损失的严重性和贷款的风险暴露数量划分频段,计量违约概率和损失大小可以得出不同频段损失的分布,对所有频段的损失加总即为贷款组合的损失分布。
KMV模型是估计借款企业违约概率的方法。首先,它利用Black-Scholes期权定价公式,根据企业资产的市场价值、资产价值的波动性、到期时间、无风险借贷利率及负债的帐面价值估计出企业股权的市场价值及其波动性,再根据公司的负债计算出公司的违约实施点(default exercise point,为企业1年以下短期债务的价值加上未清偿长期债务帐面价值的一半),然后计算借款人的违约距离,最后根据企业的违约距离与预期违约率(EDF)之间的对应关系,求出企业的预期违约率。
上述四个模型的区别可归纳为以下六个方面。第一,在风险的界定方面, CreditMetrics和麦肯锡模型属于MTM模型;CSFP信用风险附加计量模型属于DM模型;而KMV模型既可被当作MTM模型,也可被当作DM模型。第二,在风险驱动因素方面,在KMV模型和CreditMetrics中,风险驱动因素是企业资产价值及其波动性;在麦肯锡模型中,风险驱动因素是失业率等宏观因素;而在CSFP信用风险附加计量模型中,关键的风险驱动因素是经济中可变的违约率均值。第三,在信用事件的波动性方面,在CreditMetrics中,违约概率被模型化为基于历史数据的固定的或离散的值;而在KMV模型、麦肯锡模型和CSFP信用风险附加计量模型中,违约概率是可变的,但服从于不同的概率分布。第四,在信用事件的相关性方面,各模型具有不同的相关性结构,KMV模型和CreditMetrics是多变量正态;麦肯锡模型是因素负载;而CSFP信用风险附加计量模型是独立假定或与预期违约率的相关性。第五,在回收率方面,在KMV模型的简单形式中,回收率是不变的常数;在CSFP信用风险附加计量模型中,损失的严重程度被凑成整数并划分为不同的频段,在频段内回收率是不变的;在KMV模型的最新版中,回收率是随机的;在CreditMetrics和麦肯锡模型中,回收率也是随机的。第六,在计量方法方面,CreditMetrics对个别贷款或贷款组合采用分析方法进行计量,对大规模贷款组合则采用蒙地卡罗模拟技术进行计量;KMV模型和CSFP信用风险附加计量模型采用分析方法进行计量;麦肯锡模型则采用模拟技术求解。
监督方式防骗必读生意骗场亲历故事维权律师专家提醒诚信红榜失信黑榜工商公告税务公告法院公告官渡法院公告
个人信用企业信用政府信用网站信用理论研究政策研究技术研究市场研究信用评级国际评级机构资信调查财产保全担保商帐催收征信授信信用管理培训
华北地区山东山西内蒙古河北天津北京华东地区江苏浙江安徽上海华南地区广西海南福建广东华中地区江西湖南河南湖北东北地区吉林黑龙江辽宁西北地区青海宁夏甘肃新疆陕西西南地区西藏贵州云南四川重庆